
Murphy’s law and computer security

Wietse Venema

Mathematics and Computing Science
Eindhoven University of Technology

The Netherlands
wietse@wzv.win.tue.nl

Abstract
This paper discusses lessons learned from a selection of
computer security problems that have surfaced in the
recent past, and that are likely to show up again in the
future. Examples are taken from security advisories and
from unpublished loopholes in the author’s own work.

1. Widely-known passwords
Imagine that you choose a password to protect your
systems and then advertise that password in big neon
signs for all to see. That would not be a very responsi-
ble thing to do. Surprisingly, this is almost exactly
what some programs have been doing for a long time.

Passwords are the traditional method to authenticate
users to computer systems. With todays computer net-
works, large pseudo-random numbers are being used as
password tokens or as cryptographic keys for commun-
ication between computer programs. Examples that will
be discussed in this paper are Kerberos tickets, X11
magic cookies, and NFS file handles.

These password tokens or cryptographic keys are not
chosen by people. Instead, a pseudo-random value is
generated programmatically whenever one is needed.
Unfortunately it is easy to end up with a predictable
result.

1.1. Predictable Kerberos keys
Recent advisories allude to a problem that allows an
attacker to impersonate users of the Kerberos version 4
[Stei88, Kohl93] authentication system. In order to
understand the problem it is not necessary to go into the
details of how Kerberos works. The problem is with
the generation of encryption keys.

In the Kerberos system, temporary encryption keys are
used to protect authentication information. One of
these encryption keys is generated by the authentication
server at the very beginning of a login session: it is part
of the ticket-granting ticket that allows an authenticated
user to obtain service through the network without hav-
ing to provide a password each time.

Unfortunately, the key generation algorithm used by the
version 4 authentication server was predictable. Ulti-
mately, all encryption keys were derived from known
information (the time of day), from constant informa-
tion (a process ID and a machine identity), and from
predictable information: a counter that was incre-
mented with each call. The result: a cryptographer’s
nightmare.

Armed with this knowledge, an intruder could imper-
sonate other users without even having to know their
password. The code fragment below illustrates the
problem:

p = getpid() ˆ gethostid();
gettimeofday(&time, (struct timezone *) 0);
/* randomize start */
srandom(time.tv_usec ˆ time.tv_sec ˆ p ˆ n++);

The fragment shows a fine example of a comment that
lies: feeding predictable input into a deterministic rou-
tine produces a predictable result. Curiously, the Ker-
beros version 4 source code already contains an
improved key-generation algorithm that does use secret
data as input, but the improved algorithm was not put
into actual use until the release of Kerberos version 51.
� ���������������������������

1. Several vendors were already aware of the problem and
had taken measures in their own version of the software.

1.2. Only 256 different magic cookies
The X Window system [Schei86, Schei92], comes with
the XDM graphical login tool. Some vendors provide
their own alternative, but the programs all perform the
same basic task: display a logo on the screen and
prompt for a login name and a password. When a
correct name and password are given, an X session is
started. This can be a default desktop that is provided
by the system, or it can be a desktop as specified by the
commands in a .xsession file in the user’s home direc-
tory.

When an X application program connects to the X
server program (i.e., to the user’s keyboard, screen and
mouse), it typically authenticates according to one of
three methods:

� No authentication: every user on the network has
access to the user’s keyboard, screen and mouse.
This is the default on too many systems.

� Client network address: all users on specific hosts
have access to the user’s keyboard, screen and
mouse. The client network address is provided by
the client host.

� Magic cookie: all users that know a 128-bit secret
value have access to the user’s keyboard, screen
and mouse. The secret is typically kept in a file
.Xauthority in the user’s home directory. The
secret is sent in the clear over the network.

Other authentication methods exist, based on data
encryption techniques, but their use is less common.
Authentication methods differ in strength. Authentica-
tion with magic cookies is more secure than authentica-
tion by client network address. Authentication by net-
work address, in turn, is a lot more secure than no
authentication at all.

The XDM program suffers from a problem much like
the one described earlier for Kerberos version 4: magic
cookies are generated from non-secret data (time of day
and process ID). Such cookies can be guessed in a
small amount of time if one has access to the victim’s
machine.

Cookie guessing becomes harder, but not impossible,
without access to the victim’s machine: it is still possi-
ble to find out the approximate time of login by finger-
ing the host. However, until recently, some XDM
implementations suffered from an even worse flaw that
made them vulnerable to arbitrary users on the network.
A fix was announced in November 1995.

The problem was than many implementations of the
UNIX random number generator are truly horrible: the
low 8 bits of its result repeat with a cycle of length 256.

These low 8 bits are exactly what some XDM imple-
mentations use when they generate a magic cookie:

for (i = 0; i < len; i++) {
value = rand();
auth[i] = value & 0xff;

}

With a cycle of length 256, there can be only 256 dif-
ferent magic cookies! It takes only a fraction of a
second to try them all and to find out which of the 256
magic cookies an X server is using. It is as if every
other house has the same key to the front door.

Fortunately, many XDM implementations are not
vulnerable to this particular problem: they either use a
better random number generator or they use an algo-
rithm that involves cryptography.

1.3. Identical NFS file handles
In a discussion of security loopholes, the Network File
system [Call95] cannot remain unmentioned. The
fsirand flaw that I describe here was found and fixed in
SunOS 4 years ago. In order to explain the problem I
will describe the NFS protocols in a nutshell.

When an NFS client host wants to access a remote file
or directory, it sends a request to the file server’s NFS
daemon. The request includes an NFS file handle that
identifies the object being accessed.

How does an NFS client obtain an NFS file handle?
Honest clients use the NFS mount protocol. When an
NFS client host wants to access a remote file system for
the very first time, the client host sends a mount request
to the file server’s mount daemon. The mount daemon
verifies that the client host has permission to access the
file system. When the mount daemon grants access, it
sends an NFS file handle back to the client.

Once an NFS client has a file handle, it can send file
access commands directly to the file server’s NFS dae-
mon. In fact, any client that is in the possession of a
valid NFS file handle can use it. Export restrictions are
primarily enforced by the mount daemon. In the most
common cases the file server’s NFS daemon does not
care what client is talking to it.

How, then, does an NFS server protect itself against
malicious clients that make up their own NFS file han-
dles? SUN’s solution was to make NFS file handles
hard to guess. When a file system is created, the
fsirand program initializes all NFS file handles with
pseudo-random numbers. The program is seeded with
a process ID and with the time of day. Unfortunately,
early fsirand implementations did not initialize the time
of day variable. Because of this missing initialization,

the time of day variable contained fixed garbage values,
depending on the system architecture. Only the process
ID was being set [Dik96].

Many sites run the same suninstall procedure to install
the operating system onto their disks. This procedure is
highly automated, and by implication, the fsirand pro-
cess ID is very predictable. Unknowingly, many sites
initialized their file systems with the same NFS file han-
dles world wide.

Thus, in order to access a file system there was no need
to use the NFS mount protocol at all. Every other house
in the street did have the same keys to the front door.

While researching this paper I noticed that many sys-
tems do not even have an fsirand command or its moral
equivalent. Some systems simply use the time of day
when allocating a filesystem inode.

1.4. Moral
Why all this attention to problems with the generation
of pseudo-random numbers? The answer is cryptogra-
phy. Whether we like it or not, cryptography is becom-
ing more and more important for the protection of data
and systems. Pseudo-random numbers are essential for
the generation of hard-to-guess cryptographic keys. The
best encryption in the world is of no use when encryp-
tion keys are taken from a predictable source, or when
the keys are taken from a too small domain.

In order to generate a secret password you need a secret
to begin with. The time of day and the process ID are
often not secret. Kerberos is just one system that has
suffered from key-generation problems. Another exam-
ple is the Netscape navigator. Until September 1995,
this software generated session keys with only about 30
bits of randomness [Net95]. This amount is even less
than the 40 bits that the US government presently
allows for exportable cryptography.

In RFC 1750, Eastlake et al recommend the use of
external sources for randomness [East94]. Even inex-
pensive computers provide excellent opportunities: for
example, keystroke timings, mouse event timings, or
disk seek times. The UNIX kernel gives convenient
access to all this information and more. By running
various incantations of the ps command you get a look
at information that changes rapidly. When you are
attached to a network (and who isn’t these days?),
statistics from the netstat command can be a good
source, too, with the caveat that network traffic can be
manipulated and monitored. The UNIX kernel is
exactly what I used as source of randomness for the
SATAN [Farm93] cookie generator: I never even con-
sidered the use of a random-number generator.

2. Burning yourself with malicious data
Only a few years ago, Eindhoven University was a
peaceful site. Some may remember its name from the
days of the great Professor Dijkstra who did fundamen-
tal computing science work on structured program-
ming, deadlock avoidance, and so on. And of course,
Eindhoven is the place where Philips began making
light bulbs and thus started its electronics imperium.

The peace came to an end when Eindhoven University
was connected to the global Internet. The university
computer systems became immensely popular with data
travelers. The facilities had become an excellent start-
ing point to get onto ‘the net’. Most visitors were care-
ful not to break things. One visitor, however, had a
problem. Every month or so he would break into one
of the university computer systems, acquire system
privileges, and wipe the machine completely clean:

rm -rf / &

The TCP Wrapper [Ven92] began as a simple tool to
maintain a log of the intruder’s network access
attempts. In the course of time I extended the program
to learn more and more about the opponent. A power-
ful extension was the booby trap. It allowed us to
automatically execute shell commands whenever a
suspicious connection attempt was made to our sys-
tems. The typical application was to finger the host that
connected to our site, in order to get information about
the user who was trying to break into our systems.

ALL: .bad.domain: \
finger -l @%h | /usr/ucb/mail root

The booby trap feature is very flexible: before the com-
mand is given to the shell, it is subjected to substitu-
tions. For example, the sequence %h is replaced by the
name of the remote host, or by its network address
when the name is unavailable.

The TCP Wrapper development process is a tedious
one: because so many systems depend on it, everything
needs to be tested very extensively. I had been using
booby traps for almost a whole year before I included
the feature into the public TCP Wrapper release. Only a
few months later I received an email message from a
kind Mr. Icarus Sparry [Spar92]. He informed me that
the booby trap feature could introduce a security loo-
phole.

The problem was as follows. The booby trap feature
substitutes host names into shell commands. Host
names are looked up via the Domain Name System
(DNS), which is a distributed database. The reply to a
DNS query can literally come from anywhere on the

Internet. With the booby trap, I was substituting
untrusted data into shell commands that were being
executed with root privileges. This was not nice.

I quickly ran a few tests and, indeed, the DNS server
would accept almost anything for a hostname. With an
unmodified DNS server I was able to generate host-
names containing various shell metacharacters. In the
DNS server data base files, only a few characters have
a special meaning (dollar, semicolon, white space and a
few others). Anything else can be put into a hostname,
for example something as destructive as:

>/etc/passwd

The attack is not as easy as it seems, though. The TCP
Wrapper attempts to expose malicious DNS servers by
asking for a second opinion. The program compares
the name and address results from a reverse lookup (by
host address) with the name and address results from a
forward lookup (by host name) and detects discrepan-
cies. Thus, an attacker would have to manipulate the
results of both forward and reverse lookups. Neverthe-
less, it is a bad idea to pass uncensored data from the
network into, for example, commands that are given to
a shell.

When a program has to defend itself against malicious
data, there are two ways to fix the problem: the right fix
and the wrong fix. The right fix is to permit only data
that is known to give no problems: letters, digits, dots,
and a few other symbols. This is the approach that I
took with the TCP Wrapper: when doing substitutions
on shell commands it replaces characters outside the set
of trusted characters by underscores.

Unfortunately, many people choose the wrong fix: they
allow everything except the values that are known to
give trouble. This approach is an invitation to disaster.
Only months ago, part of the WWW (world-wide web)
community discovered that CGI (common gateway
interface) scripts and other WWW server helper appli-
cations can be manipulated by sending data containing
newline characters, especially when that data is passed
on to shell commands.

2.1. Moral
Recent advisories point out that programs can be mani-
pulated by malicious data from name servers. Together
with the sendmail program, TCP Wrappers and CGI
servers are not the only programs that must defend
themselves against malicious data. For example, if you
do automated logfile analysis with Swatch [Hans92] or
with other tools, you’d better be careful when passing
data from logfiles on to other programs: untrusted sys-
tems can often send data directly to the syslog daemon.

3. Secrets in user-accessible memory
In a previous life I was a nuclear physicist. Working
with delicate equipment was a matter of daily routine.
Of course things would stop working at the most incon-
venient hour of the day. One golden rule that I learned
very quickly: if you’re fixing a problem, better be sure
that you’re not breaking something else in the process.

In the information technology world, working with fra-
gile pieces of software is a matter of daily routine. Of
course programs stop working at the most inconvenient
hour of the day - hardware failures are becoming rare.
One golden rule that a system administrator learns very
quickly: if you’re fixing something, better be sure that
the solution does not break something else. Of course
we never break something while fixing a problem.

The programmer is faced with the same problems. All
too often something breaks while a security or non-
security problem is being fixed2. Shadow passwords
are a good example: they were invented to fix one
problem and at the same time opened up a hole.

Shadow passwords attempt to cure a real problem. By
the end of the eighties, computers had become fast
enough that large-scale password cracking became
practical. Alec Muffett’s crack program [Muff92] gave
everyone the best available tool at the time. Like many
UNIX password cracking programs, Alec’s program
takes encrypted passwords from a password file and
tries to guess them in a systematical manner. It is amaz-
ing what it found when I first ran it on our own pass-
word files.

Some people stated that such programs should not be
made available because they might help intruders to
break into systems. History repeats. We had a similar
discussion again about the release of SATAN, only this
time the opposition was much stronger.

Instead of applying censorship to the distribution of
software, a more practical solution is to get to the root
of the problem: prevent users from choosing weak pass-
words in the first place, and make encrypted password
information less easily accessible. The usual approach
is to move the encrypted passwords to a so-called sha-
dow password file that is accessible only to privileged
programs. With shadow passwords an attacker can no
longer run a password cracker on a stolen copy of the
regular password file. Instead, one must connect to the
machine to try a password. This makes the risk of
detection much larger.
� ���������������������������

2. Not to mention the things that break as a side effect of
fixing a non-problem.

Shadow passwords can give a false sense of security,
though. It seems as if there is less need to be careful
when choosing a password. After all, the encrypted
password is protected from password cracking pro-
grams. However, it is easy to see how shadow pass-
words can actually weaken a system’s defenses. Here is
a simplified description of how the login program
works:

� read username and password from user
� look up password and shadow file entry
� validate username and password
� drop privileges and execute login shell

In the second step, the login program is still privileged,
so it can read the secret shadow password file. Every
practical login implementation will read a lot more data
than just the entry for the user logging in: most likely it
reads a whole kilobyte of data or even more. This
excess data lingers on in memory buffers somewhere in
the process address space.

The fourth step implies a race condition: in-between the
time the login program switches to the user and the
time it executes the login shell, the login program can
be signaled by the user. Shadow password file informa-
tion that was read in step 2 can be found in the core
dump.

It is easy to fall into the trap and keep secret data in the
memory of unprivileged programs. I fixed my logdae-
mon [Ven96] utilities years ago when I ported them to
Solaris 2, which has shadow passwords. The fix
prevents programs from dumping core.

The SSH [Ylo96] utilities suffered from a similar prob-
lem. SSH is a re-implementation of rlogin, rsh and of a
few other utilities. It aims to improve host and/or user
authentication by the use of strong cryptography. Some
of this protection was lost when it was discovered that
cryptographic keys remain in memory after a process
has switched privilege to the user.

3.1. Moral
The moral of this story is that one should avoid carry-
ing secret information in the memory of unprivileged
programs. Preventing core dumps does not give total
protection, though; it takes kernel support to protect a
process against manipulation with a debugger pro-
gram3. It is therefore essential that a process wipes
� ���������������������������

3. In particular, the UNIX kernel should not allow
unprivileged users to debug a process with an effective,
real, or saved user or group ID that belongs to another
user [Ellis95].

secrets from memory before switching user privileges.
Part of the solution is to use a modified memory
manager (malloc) that wipes memory upon return to the
free memory pool.

4. Depending on other programs
Being the author of a popular security tool is much like
walking a wire thirty feet above the ground without a
safety net. The bright side of such an elevated position
is that you get a nice view of the world. The dark side is
that an error can have painful consequences.

A case in point is the booby trap example of a few sec-
tions ago: the example where we finger a host when-
ever a connection comes from a suspicious source.

ALL: .bad.domain: \
finger -l @%h | /usr/ucb/mail root

The booby trap depends on two programs: finger and
/usr/ucb/mail. The finger program is relatively harm-
less: after all, it just connects to the host and reads the
reply across the network. Unfortunately, it is not as
harmless as it appears to be at first sight. Imagine what
happens when the remote finger demon just keeps send-
ing data forever: sooner or later the disk fills up with
an enormous temporary file. A judicious link from
/dev/zero to a user’s .plan file is sufficient to effect a
denial of service attack.

The bigger problem is with the dependence on
/usr/ucb/mail. This is a complex program with many
features. One feature is that it has so-called shell
escapes: the mail program recognizes commands in its
input when they are preceded by a tilde character. The
tilde-command feature was useful when composing a
message at the terminal. Nowadays, few people still
use the raw /usr/ucb/mail command in interactive
mode, but the feature is still there. By inheritance,
tilde-command is also supported by the System V mailx
program.

Three years ago, Borja Marcos pointed out in private
email that these tilde commands are also recognized
when /usr/ucb/mail reads its input from a pipe
[Marc93]. This was bad news: anyone could put shell
escape commands into their .plan file and have them
executed remotely by triggering a TCP Wrapper
finger+mail booby trap.

I decided to silently fix the problem by flooding the
market. Each year brought a new major TCP Wrapper
release with enough useful features to make people
upgrade their old version to the current one. With the
safe� finger program I attempted to eliminate all known
problems with the finger+mail booby trap. While I was

at it, I took the opportunity to solve a few other prob-
lems, too: fingering a host is not a trivial activity.

This time, at least, I was in good company: a year later
it became known that the widely-used INN news tran-
sport software [Salz92] had fallen into the same trap. It
was possible to execute shell commands world-wide on
news servers running INN, by posting just one single
news article.

The problem with /usr/ucb/mail shell escapes is going
stay with us for quite a while: I have found that many
web sites run CGI helper scripts that send data from the
network into /usr/ucb/mail, without censoring of, for
example, newline characters embedded in the data.

4.1. Moral
Insecurity by depending on other programs is an old
problem. The problem becomes even worse when
security depends on programs that were not designed
for security purposes. Both finger and /usr/ucb/mail are
unprivileged programs. They were not designed to
defend themselves against malicious inputs from the
network. The finger+mail loophole is just one type of
accident that can happen. As the author of the TCP
Wrapper, it is not possible for me to protect every user
against every possible accident. The TCP Wrapper
booby trap feature is a sharp tool and it should be used
with care.

5. Concluding remarks
The problems discussed in this paper are only the tip of
a large ice berg of recurring security problems. There
was a lot of material to choose from, and the selection
is far from representative. UNIX environment settings
are just one example of a major source of recurring
trouble that could not be discussed.

All examples in this paper were taken from the UNIX
world. Is UNIX such a bad system? Of course not.
UNIX is a platform where much pioneering work was
done and still is being done. It is therefore not surpris-
ing that many errors were made first in the UNIX
environment. On the positive side, these experiences
should give UNIX users an advantage. For example,
now that PC operating systems become capable enough
to provide network services, we can expect to see a lot
of familiar problems coming back.

As the examples in this paper show, the path of the
security programmer is riddled with land mines. The
author has had the questionable privilege to meet Mr.
Murphy several times in person. Murphy is a cruel
teacher.

6. References
[Call95]

B. Callaghan, B. Pawlowski, P. Staubach: NFS
version 3 protocol specification. RFC 1813, June
1995.

[Dik96]
Casper H.S. Dik. Private communication, May
1996.

[East94]
D. Eastlake, S. Crocker, J. Schiller: Randomness
recommendations for security. RFC 1750,
December 1994.

[Ellis95]
James T. Ellis. Private communication, May
1995.

[Farm93]
Dan Farmer, Wietse Venema: Improving the
security of your site by breaking into it.
ftp.win.tue.nl:/pub/security/admin-guide-to-
cracking-101.Z, December 1993.

[Hans92]
Stephen E. Hansen, E. Todd Atkins: Automated
system monitoring and notification with Swatch.
Proc. UNIX security III, Baltimore, September
1992.

[Kohl93]
J. Kohl, C. Neuman: The Kerberos network
authentication service (V5). RFC 1510, Sep-
tember 1993.

[Marc93]
Borja Marcos. Private communication, June
1993.

[Muff92]
Alec D.E. Muffett: Crack version 4.1 - a sensible
password checker for UNIX. Part of the Crack
distribution, ftp://cert.org/pub/tools/crack/

[Net95]
Netscape technical documents: Potential vulnera-
bility in Netscape products. http://www.-
netscape.com/newsref/std/random_seed_-
security.html, September 1995.

[Salz92]
Rich Salz: InterNetNews: Usenet transport for
Internet sites. Proc. Usenix conference, San
Antonio, June 1992.

[Schei86]
Robert W. Scheifler, Jim Gettys: The X window
system. ACM transactions on graphics vol. 5,
no. 2, April 1986.

[Schei92]
Robert W. Scheifler, Jim Gettys: X window sys-
tem (third ed.). Digital Press, 1992.

[Spar92]
Icarus Sparry. Private communication, August
1992.

[Stei88]
Jennifer G. Steiner, Clifford Neuman, and Jeffrey
I. Schiller: Kerberos: an authentication service
for open network systems. Proc. winter Usenix
conference, Dallas, 1988.

[Ven92]
Wietse Z. Venema: TCP WRAPPER, network
monitoring, access control and booby traps. Proc.
UNIX security III, Baltimore, September 1992.

[Ven96]
Wietse Z. Venema. The logdaemon utilities pro-
vide a login program and several network dae-
mons with enhanced logging and authentication.
ftp.win.tue.nl:/pub/security/logdaemon_XX.tar.gz.

[Ylo96]
Tatu Ylo"nen: SSH - secure login connections
over the internet. Proc. UNIX security VI, San
Jose, July 1996.

